Inside the Sweep Sound Editor

Conrad Parker conrad@vergenet.net

August 2001

Abstract

This paper outlines the development of new
features in the sound editor Sweep. These
new features, and similar requirements of other
applications, motivated the development of a
new audio sequencing and mixing library, Axel.
This paper briefly describes Axel and the im-
plementation of new Sweep features using this
library.

1 Motivation

Sweep is a sound file editing application [?].
The core features include the basic editing op-
erations of cut, copy, paste and splice with
discontinuous selections, the ability to import
standard LADSPA[?] effects plugins and a na-
tive plugin format for custom operations such
as selecting sound regions by loudness thresh-
old.

The original design goal of Sweep was to
make a sound editor with similar interaction
style to popular image editors such as the
Gimp[?]. This would entail features such as
layered editing, some notion of “transparency”,
and the ability to grab and move selected re-
gions of sound. An initial attempt to im-
plement these features directly in Sweep was
made, however it soon became apparent that
the code was growing with unnecessary com-
plexity and that similar code was being rewrit-
ten to perform many different operations as
outlined below.

1.1 Simple editing

Editing in Sweep operates on discontinuous se-
lections, whereby a collection of small regions
in a sound can be simultaneously cut out and
then pasted elsewhere, or spliced into another
sound. Thus the editing code in Sweep con-
tained functions to merge, mix and splice lists
with many small regions of sound.

1.2 Multiple with
parency

layers trans-

Layering provides the user with the ability to
independently work on different aspects of a
sound with some notion of occlusion or fading
between them. For example, one could extract
the high frequency components of a sound into
a separate layer, which can then be enhanced
and shifted in time before mixed back down
into the original sound.

The introduction of layering required the
coding of routines to mix layers, and to main-
tain synchronisation between layers during
editing. These layers were designed to be
able to each accommodate sparse collections
of sound.

1.3 Floating selections

A floating selection, in the language of image
editors, is essentially a special layer above all
others in which the selected region exists. The
floating selection can be interactively moved by
the user. Thus, the implementation of floating



selections required the ability to translate lay-
ers relative to each other.

1.4 Manipulation of large files

The initial releases of Sweep read an entire
sound file into memory. This was clearly inef-
ficient, especially as users were wanting to edit
files of around 50MB (a 5 minute WAV file at
CD quality).

Typically, a user might load up a 5 minute
song file only to edit out a small section of si-
lence at the beginning or end, to crop part of
the file out or to apply an effect to a short
region of it. For these operations it is not nec-
essary to keep a copy of the entire file in mem-
ory, thus an obvious optimisation is to only
store modified regions in memory and to read
unchanged data off disk as needed.

1.5 Non-destructive editing

A similar request from users was the ability
to perform non-destructive editing, in which
many edits can be performed without touch-
ing the data on disk. However for large edits,
and for persistence between editing sessions,
this requires the paging and storage of modi-
fied regions on disk.

1.6 Editing of compressed files

Compressed file formats such as MP3[?] and
Ogg Vorbis|?] are extremely popular and al-
low a 5 minute recording to occupy only a few
megabytes. For small edits, it would be desir-
able to be able to work with compressed files
without decompressing the entire file.

1.7 Parameter envelopes

Effects plugins such as those of LADSPA typ-
ically provide a number of parameters for the
user to set, such as the desired depth of a rever-
beration or the cutoff frequency of a low-pass

filter. Sweep already handled these by provid-
ing the user with a dialog to set parameter
values when applying an effect, but it would
be more interesting to allow the user to de-
fine a line or curve describing how each pa-
rameter should change over time. For example,
rather than simply muffling a sound by apply-
ing a low pass filter with a particular cutoff
frequency, the filter can be “opened up” over
time to slowly reveal the higher frequency com-
ponents like cymbals and melody.

2 Generalisation

There is quite a lot of overlap in the required
functionality outlined above. Meanwhile, sim-
ilar needs were encountered in other software
such as Aube[?][?], a live music sequencer
and effects program which needs the ability to
record mix automation and song structure.

Unfortunately much of the existing data ma-
nipulation code in Sweep was tied to user inter-
face callbacks or made assumptions about the
user state so it could not be reused in other
applications. It was apparent that an abstrac-
tion layer encompassing the features required
of Sweep and Aube was required, and that it
should be designed to allow generally useful
manipulation of audio data.

2.1 Management of sparse, multi-

channel audio data

The most obvious abstraction was that of a
container for multiple channels of audio data
stored sparsely in a collection of memory re-
gions. With a generic interface to access and
manipulate such data, much of the merging
and mixing code throughout Sweep could be
centralised.



2.2 Generic caching

The handling of large files, non-destructive
editing and editing of compressed files in Sweep
all require the maintenance of memory and
disk file caches. Similarly, the repetition of
musical processing in Aube was a candidate
for caching optimisations.

2.3 Parallel and serial processing

Aube implements an audio filter network, al-
lowing the user to create arbitrary connec-
tions between many sound generation and pro-
cessing elements. Typically such elements are
chained together in series, but an element can
also provide its output to a number of other
elements in parallel. Mixers which read from
multiple elements in parallel are also important
in such an environment.

This kind of audio filter network is a popular
mechanism for constructing complex arrange-
ments of effects, however it can be cumbersome
to deal with large networks.

Sweep’s layering is a way of implicitly mix-
ing audio data in series, and can be concep-
tually extended to the stacking of both data
sources and sound filters in series. A com-
plementary method for processing elements in
parallel would be beneficial.

2.4 Mix automation

The term “mix automation” refers to the capa-
bility of an audio processing system to record
changes in parameter values and the intercon-
nection of processing elements over time. This
is similar to the requirement for parameter en-
velopes in Sweep, and also to the ability to
record the extents of regions over which effects
are applied.

2.5 Low processing latency

In order to allow live manipulation in Aube,
and to allow instantaneous previewing of large
edits in Sweep, the audio subsystem must not
introduce excessive processing latency; it must
provide the ability to independently process
tiny intervals of sound.

3 Axel

The generic audio processing requirements out-
lined above prompted the development of a li-
brary called Axel. Axel is an audio sequenc-
ing and mixing library that provides a multi-
channel, sparse audio data container (streams),
a structured mixing abstraction (decks), and
widely useful means of generating control data
(via envelopes) and of caching audio data.

3.1 Streams, channels and chunks

Figure 1: Inside an Axel stream

The abstraction of multichannel audio data
in Axel is known as a stream. The structure
of a stream is shown in Figure 1. A stream
may consist of multiple channels, each of which
can consist of an arbitrary number of sparsely
placed chunks of raw audio data. The channels
are named with spatial names such as LEFT,
RIGHT and CENTRE as required for common
home, studio and theatre environments.

Generic routines are provided for mixing,
multiplying and blending streams of data.



3.2 Decks, tracks, layers and sounds

The top level structured mixing abstraction in
Axel is known as a deck. A deck contains a
number of tracks which are mixed in paral-
lel. Each track may contain a number of layers
which are mixed from bottom to top in series.
Finally, these layers each contain a sequence
of sounds with transparency. This structure is
illustrated in Figure 2.

Figure 2: Inside an Axel deck

The sequence of sounds in a layer can be in-
dexed by samples, seconds or tempo. Sounds
provide audio data from any instrument or
effect source, and these sources can each be
reused multiple times. A sound can even
source its audio data from another entire deck,
thus decks can be used to sequence other decks.
In this manner effects can be applied to se-
quences of decks, and sequences of decks can
be stored as higher level units such as verses
and choruses in a music application.

3.3 Envelopes and mix automation

The information describing how a parameter
changes over time appears as a generic data
source. In order to create this mix automation
information Axel provides linear and spline en-
velopes. However, parameters could alterna-
tively be controlled by other means such as
from a recording of physical slider values, from
a sine wave generator, or from a deck con-

structed solely to generate interesting parame-
ter values.

3.4 Processing latency and caching

All sound sources in Axel, including streams,
decks and envelopes, implement a base set of
functionality such as for seeking and for pro-
cessing small regions of data. The require-
ment for low processing latency is met by these
semantics, which are optimised for sequential
processing but allow the evaluation of arbitrar-
ily small temporal slices.

Axel also provides a generic caching abstrac-
tion which can be applied to any sound source.

4 Implementation of Sweep
using Axel

By rewriting Sweep to use Axel for much of its
functionality it was possible to implement the
core features and to incorporate the newly de-
sired features elegantly. Each sound file to be
edited is assigned a deck with a single track.
That track contains a number of layers, with
the original sound data at the bottom, the
user’s floating selection and previews of effects
on the top, and the user’s layers in between.

4.1 Simple editing

The basic editing functions of cut, copy, paste
and splice are handled by maintaining a sepa-
rate deck to contain the cut buffer. The com-
plexity of maintaining and merging a discon-
tinuous selection is handled by Axel’s stream
structure.

4.2 Multiple with

parency

layers trans-

The desired layering features map directly to
Axel’s layering model, which of course comes



as no surprise as Sweep’s layering greatly in-
fluenced that portion of Axel.

4.3 Floating selections

A floating selection is maintained as the top-
most layer. Moving this selection, even if
discontinuous, is reduced to manipulating the
start indices of the sounds in that layer. Mix-
ing the floating selection back in is a layer mix-
ing operation in Axel.

4.4 Large files and non-destructive
editing

An Axel file source can provide its own sound
data on demand, thus it is no longer necessary
for Sweep to load an entire file into memory. If
a small section of the file is edited, it is a imple-
mented by adding the edited region to a layer
above the file source with no transparency.
The data seen by the user during the editing
session is directly sourced from the file outside
of the edited region, and from memory or a
separate disk cache within the edited region.
Thus Axel’s layering and caching can be used

to implement non-destructive editing of large
files.

4.5 Editing of compressed files

Compressed files appear to Axel only in their
decompressed form. It is not possible to edit
the compressed data fields via Axel, but it is
possible to treat a compressed audio file as
though it were uncompressed.

4.6 Parameter envelopes

Using Axel’s linear and spline envelopes it is
possible to vary effects parameters over time.
The calculation of these envelopes is handled
within Axel.

5 Conclusion

This paper outlined the problems faced by the
new features of Sweep, a generalisation of these
problems to a larger class of audio applications,
the implementation of a library (Axel) to ad-
dress these issues and its use in implementing
new Sweep features.

Availability
Axel is available under the GNU
Lesser General Public License at

http://www.vergenet.net/ conrad/axel/



