
AXEL Application Programming

Conrad Parker

AXEL Application Programming
by Conrad Parker

Copyright © 2001 by Commonwealth Scientific and Industrial Research Organisation, Australia

Table of Contents
1. Introduction ..??

1.1. Streams, channels and chunks...??
1.2. Decks, tracks, layers and sounds...??
1.3. Envelopes and mix automation...??
1.4. Processing latency and caching..??

Index..??

i

List of Figures
1-1. Inside an Axel stream...??
1-2. Inside an Axel deck..??

i

Chapter 1. Introduction
Axel is an audio sequencing and mixing library that provides a multichannel, sparse
audio data container (streams), a structured mixing abstraction (decks), and widely
useful means of generating control data (via envelopes) and of caching audio data.

1.1. Streams, channels and chunks

Figure 1-1. Inside an Axel stream

The abstraction of multichannel audio data in Axel is known as a stream. The structure
of a stream is shown inFigure 1-1. A stream may consist of multiple channels, each of
which can consist of an arbitrary number of sparsely placed chunks of raw audio data.
The channels are named with spatial names such as LEFT, RIGHT and CENTRE as
required for common home, studio and theatre environments.

Generic routines are provided for mixing, multiplying and blending streams of data.

1.2. Decks, tracks, layers and sounds
The top level structured mixing abstraction in Axel is known as a deck. A deck contains
a number of tracks which are mixed in parallel. Each track may contain a number of
layers which are mixed from bottom to top in series. Finally, these layers each contain a
sequence of sounds with transparency. This structure is illustrated inFigure 1-2.

1

Chapter 1. Introduction

Figure 1-2. Inside an Axel deck

The sequence of sounds in a layer can be indexed by samples, seconds or tempo.
Sounds provide audio data from any instrument or effect source, and these sources can
each be reused multiple times. A sound can even source its audio data from another
entire deck, thus decks can be used to sequence other decks. In this manner effects can
be applied to sequences of decks, and sequences of decks can be stored as higher level
units such as verses and choruses in a music application.

1.3. Envelopes and mix automation
The information describing how a parameter changes over time appears as a generic
data source. In order to create this mix automation information Axel provides linear
and spline envelopes. However, parameters could alternatively be controlled by other
means such as from a recording of physical slider values, from a sine wave generator,
or from a deck constructed solely to generate interesting parameter values.

1.4. Processing latency and caching
All sound sources in Axel, including streams, decks and envelopes, implement a base
set of functionality such as for seeking and for processing small regions of data. The
requirement for low processing latency is met by these semantics, which are optimised
for sequential processing but allow the evaluation of arbitrarily small temporal slices.

Axel also provides a generic caching abstraction which can be applied to any sound
source.

2

Index

3

